с какими клеточными рецепторами связывается коронавирус

С какими клеточными рецепторами связывается коронавирус

В журнале Nature опубликован очень подробный обзор, характеризующих особенности строения и жизненный цикл SARS-CoV2, механизмы инфицирования и избегания своевременного иммунного ответа, обозначены потенциальные мишени для создания противовирусных препаратов. Также представлены результаты компьютерного моделирования строения вируса и механизмов проникновения в клетку.

Особенностью данного вируса является наличие очень большого количества гликанов на поверхности спайк-протеина, маскирующих его от иммунной системы человека. Поэтому на первом этапе заболевания вирус подобен «волку в овечьей шкуре» и остается невидим для иммунной системы. В дальнейшем, когда вирус уже размножился, иммунный ответ может развиться даже избыточно, что, по-видимому, лежит в основе тяжелого течения заболевания.

В S2- субъединице спайк-протеина есть три участка, делающих «ножку» спайк-протеина гибкой, что позволяет ей «искать» рецепторы на клетках хозяина более эффективно. Такая структура довольно редка для вирусов, обычно аналогичные «шипики» на поверхности вириона ригидны (такова, например, ситуация у вируса гриппа).

Важной частью спайк-протеина является RBD-домен, функцией которого является связь с рецептором ACE2 на поверхности клетки-хозяина. У SARS-CoV2 эта связь в 2-4 раза сильнее, чем у вируса SARS. Во время взаимодействия с рецептором этот домен «выдвигается» из-за двух маскирующих его молекул гликанов. Исследования in vitro показали, что мутации в этих двух гликанах могут полностью нарушать процессы проникновения вируса в клетку. Для эффективного взаимодействия RDB и ACE2 предпочтительна более «высокая» позиция этого домена на остальными структурами. У альфа варианта вируса найдено 10 дополнительных мутаций, приводящих RBD – домен в более «высокое» положение, а у дельта вируса – еще 3 мутации.

Попав в клетку, вирус подавляет экспрессию генов клетки-хозяина, в том числе – образование интерферонов, сигнализирующих о вирусной инфекции. Для ковидной инфекции типична очень низкая концентрация интерферонов в крови.

В дальнейшем может происходить формирование синцитиев из клеток легочной ткани. Считается, что синцитии позволяют дольше и эффективнее вырабатывать вирусные белки. Такой тип агрессии типичен для персистирующих вирусов – например, ВИЧ. SARS-CoV2 индуцирует даже формирование синцитиев клеток респираторного эпителия с лимфоцитами, что мешает нормальному иммунному ответу. Такой тип «маскировки» от иммунитета типичен для опухолей, а не вирусов.

В дальнейшем перестраивается эндоплазматический ретикулум с формированием шарообразных двухмембранных структур, в которых происходит активный синтез белков вируса. Выход вирионов наружу осуществляется в лизосомах, формирующихся в комлексе Гольджи, путем экзоцитоза. Считается, что молекулярные механизмы, ответственные за описанные процессы, могут быть мишенями для противовирусной терапии.

В месте соединения S1 и S2 субъединиц спайк-протеина есть зона, которая способна связывать и быть расщепленной фурином – протеазой клетки-хозяина, содержащейся в лизосомах. Такое предварительное расщепление значительно упрощает в дальнейшем взаимодействие с трансмембранной протеазой TMPRSS2 и значительно увеличивает проникновение вирусной частицы в следующую клетку. Для вируса SARS показано, что порядка 10% вирусных частиц на выходе из клетки – хозяина связано с фурином. У вируса SARS-CoV2 в соответствующем локусе, отвечающем за связь с фурином, идентифицированы мутации. Как следствие, до 50% вирионов альфа-разновидности SARS-CoV2, выходящих из клетки-хозяина, связаны с фурином, а в случае дельта-вируса – до 90%, что, по-видимому, и объясняет более агрессивное распространение этого варианта вируса. Есть данные, что у пациентов с дельта-формой в тканях легких и носоглотки содержание вирионов достоверно выше, чем у носителей альфа-формы.

sars cov 2

По материалам: Megan Scudellari. How the coronavirus infects cells — and why Delta is so dangerous. Nature 595, 640-644 (2021). doi:

Источник

Актуальный взгляд на коронавирусную инфекцию

Опубликовано Администрация в 01.09.2020 01.09.2020

С какими клеточными рецепторами связывается вирус SARS-CoV-2?

1) β-рецептор интерлейкина 8;
2) Пре-B-клеточный рецептор;
3) AПФ2;
4) Т-клеточный рецептор.

Какие генетические типы нового коронавируса выделяют ученые-генетики?

1) Тип А и В;
2) Тип А и С;
3) Тип А, В, С, D;
4) Тип А, В, и С.

В какой биологической среде организма человека вирус SARS-CoV-2 персистирует дольше всего?

1) Отделяемое респираторного тракта;
2) Сыворотка крови;
3) Грудное молоко;
4) Фекалии.

Где вирус SARS-CoV-2 сохраняет свою активность наиболее длительно?

1) Картон;
2) Нержавеющая сталь;
3) Медь;
4) Воздушный аэрозоль.

Какова минимальная экспозиция спирта, приводящая к гибели возбудителя COVID-19?

1) 30 секунд;
2) 10 секунд;
3) 60 секунд;
4) 40 секунд.

Какое максимальное расстояние может преодолевать «вирусный аэрозоль» с частицами SARS-CoV-2?

1) 10 метров;
2) 5 метров;
3) 7 метров;
4) 4 метра.

Сколько видов РНК-вирусов насчитывает семейство коронавирусов в настоящее время?

1) 20;
2) 10;
3) 30;
4) 40.

Наиболее достоверным методом специфической диагностики острой инфекции SARS-CoV-2 является:

1) Иммуноферментный анализ IgG;
2) Иммунохроматографические тесты;
3) Тест ПЦР;
4) Реакция иммунофлуоресценции.

К какой группе патогенности относится новый коронавирус SARS-CoV-2?

К возможным симптомам новой коронавирусной инфекции относится:

1) Боль в мышцах;
2) Аносмия и дисгевзия;
3) Лихорадка;
4) Все вышеперечисленное.

Показанием для перевода пациента с COVID-19 в ОРИТ является:

1) Угнетение сознания;
2) Нестабильная гемодинамика;
3) SpO2 НМО

Источник

Иммунный ответ на коронавирус SARS-CoV‑2 у больных COVID‑19

Академик Российской академии наук, д.м. н., президент
ФБГУ «НМИЦ ДГОИ им. Дмитрия Рогачева» Минздрава России

В статье представлен анализ результатов исследований иммунного ответа и памяти к SARS-CoV‑2, включая все ветви адаптивного иммунитета, иммуноглобулины, В-клетки памяти, CD8+- и CD4+-T-клетки у больных в динамике в течение 6–8 месяцев после начала заболевания.

Гуморальное звено

0c1a4a30be45d887d169ab776afe90d6У большинствабольшинства людей, инфицированных SARS-CoV‑2, отмечается сероконверсия спустя неделю после появления клинических признаков заболевания. На 2‑й неделе обнаруживаются антитела как к эпитопам шипа (RBD), или спайк-протеина (S), так и нукле- окапсида (NCP) коронавируса (рис. 1). Клас- сический вариант смены IgM → IgG → IgA нарушен. Первыми на 2‑й неделе определяются секреторные антитела класса А: на 7‑е сутки — у 75 %, на 10–12‑й день — у 100 % пациентов. За ними на 2‑й неделе повышаются макроглобулины (IgM) и на третьей неделе — Ig G.

Факт первичного иммунного ответа слизистых на COVID‑19 необычен и требует объяснения. Обсуждаются две гипотезы.

Первая: вирусы контаминируют слизистые дыхательных путей и ЖКТ за 7–14 дней до появления системного ответа и клинических проявлений инфекции, поражая клетки микробиоты — используют их для репродукции вируса.

Вторая: кросс-реактивная продукция антител, предпосылкой которой являются Spike-реактивные CD4+-Т-клетки, обнаруженные у большинства пациентов с COVID‑19 и более чем у 34 % неинфицированных людей. Это подтверждает существование общих эпитопов эндемичных коронавирусов, вызывающих банальные ОРВИ и COVID‑19.

Важно, что изотипы иммуноглобулинов (либо IgG, либо IgA) конкурировали за нейтрализующую активность по отношению к SARS-CoV‑2 в зависимости от локализации. Сывороточные антитела IgG сильно коррелировали с величиной IgG-ответа и тяжестью заболевания. У пациентов, например, с IgA-назальным ответом определялась высокая активность нейтрализации вирусов. Инфекция у таких больных протекала бессимптомно.

Это, с одной стороны, предполагает возможность нейтрализации вируса с помощью IgA слизистых без системного ответа, что имеет отношение к исходам заболевания. А с другой стороны, из-за множества корреляций, наблюдаемых между типами антител и их активностью в разных анатомических участках, клиническая интерпретация гуморального ответа существенно затруднена.

Кроме того, эти данные имеют важное значение для нашего понимания защиты вакцинации, индуцирующей системный ответ на вакцинные гены или белки коронавируса по классическому пути и обеспечивающей иммунный ответ слизистых оболочек на 3–6‑й неделе после вакцинации. В идеале вакцина должна не только защитить реципиента от неизбежной болезни, но и предотвратить бессимптомное носительство, что закрыло бы проблему бессимптомных носителей в популяции.

e26bf7e96eb5e220b8fe3d170fa2634aИнтерес представляет динамика уровней специфических антител в течение заболевания и после выздоровления (рис. 2). Так, титры нейтрализующих антител SARS-CoV‑2 Spike IgG в исследовании ELISA были стабильными от 20 до 240 дней (хотя и неоднородными у разных пациентов) и колебались в диапазоне от 5 до 73 071 (медиана — 575). Период полувыведения (t1/2) составлял 140 дней. Кинетика SARS-CoV‑2 NCP IgG аналогична Spike IgG в течение 10 месяцев наблюдения (t1/2— 68 дней, разброс — от 50 до 160 дней) за выздоровевшими больными. В конечном итоге у 90 % пациентов присутствовали нейтрализующие антитела в титре более 20 через 6–9 месяцев после появления симптомов.

Титры Spike IgА и RBD IgА сохранялись на стабильном уровне на протяжении всего периода наблюдения t1/2— 210 дней, но у отдельных пациентов уровень специфических IgА-антител достоверно снижался через 90 дней.

Нельзя дать однозначный ответ в отношении серонегативных случаев COVID‑19. По-видимому, кроме протективного эффекта иммунитета слизистых, ответ напрямую связан с уровнем вирусной нагрузки SARS-CoV‑2. С одной стороны, высокие вирусные нагрузки связаны с более ранним ответом антител, в то время как у пациентов с низкой вирусной нагрузкой не может быть сероконверсии. С другой стороны, кинетика иммунного ответа может быть показателем скорости элиминации вируса у больного.

Идентификация специфичных В-клеток памяти к Spike, RBD и NCP с использованием флюоресцентно окрашенных зондов на IgD– и (или) CD27+ c последующей дифференцировкой по изотипам поверхностных IgM, IgG или IgA показала следующее. Количество специфических В-клеток увеличивалось в течение 120 дней после начала заболевания с последующим выходом на плато, в то время как Spike-специфические В-клетки памяти у людей, не заболевших COVID‑19, практически не встречались. RBD-специфические В-клетки появлялись на 16‑й день, и их количество увеличивалось в течение последующих 4–5 месяцев. Интересно, что только 10–30 % Spike-специфических В-клеток памяти было специфично для домена RBD через 6 месяцев после выздоровления больных.

NCP-специфичные В-клетки памяти также стабильно увеличивались в те же сроки и определялись спустя 5–6 месяцев после заболевания. Представленность изотипов иммуноглобулинов Spike-специфических В-клеток имела следующую динамику. В ранней фазе (20–60 дней) после заболевания IgM+ и IgG+ на В-клетках были представлены одинаково. В период после 60 дней до 240‑х суток преобладали IgG+ Spike-специфические В-клетки. Частота IgА+ Spike-специфических клеток составляла примерно 5 %, и они равномерно распределялись в течение всего периода наблюдения в 8 месяцев. Корреляция между сывороточным IgA и IgA слизистых оболочек не проводилась.

Сходная картина динамики наблюдалась и в случае IgG+, IgM+ и IgА+ к эпитопам RBD и NCP коронавируса. В то же время долгосрочное присутствие циркулирующих В-клеток памяти, направленных как против основных SARS-CoV‑2‑нейтрализующих таргетов (Spike и RBD), так и против не нейтрализующего таргета (NCP), свидетельствует о клеточной памяти, сохраняющейся после естественного воздействия вируса. Это может быть использовано для планирования ревакцинации. Тот факт, что почти все RBD- специфические IgG+-В-клетки памяти экспрессировали CD27, свидетельствует о долгосрочной иммунной памяти.

Анализ полученных данных говорит о том, что снижение нейтрализующих и других антител к SARS-CoV‑2 после клинического выздоровления вовсе мунитета. Просто с развитием и сохра- нением памяти В-клеток, способных активизироваться при встрече с новыми штаммами коронавируса, уровень антител в сыворотке снижается, в то время как IgА-ответ слизистых сохраняется на постоянном уровне в течении всего периода наблюдения.

Клеточный ответ

Процент больных с обнаруживаемыми циркулирующими CD8+-Т-клетками памяти через месяц после возникновения симптомов составил 70 %. К 6–9 месяцам клетки обнаруживались у 50 % выздоровевших пациентов. Фенотипические маркеры показали, что большинство SARS-CoV‑2‑специфичных CD8+-Т-клеток представлены терминально дифференцированными клетками памяти.

Циркулирующие SARS-CoV‑2‑специфичные CD4+-Т-клетки памяти через месяц после начала заболевания обнаруживались у 93 % пациентов. Через 6–9 месяцев уровень этих клеток был стабильным, а сами они выявлялись у более чем у 90 % пациентов, перенесших COVID‑19. Причем это касалось как Spike-специфичных, так и мембраноспецифичных CD4+-Т-клеток памяти.

Интересно, что при сравнении параметров иммунного ответа у больных с тяжелым и легким течением инфекции гуморальные показатели были более высокими у тяжелых больных, в то время как CD8+-Т-клетки были стабильными, а CD4+ — более низкими в тяжелых случаях заболевания. Объяснений этому феномену нет, важно, что слабый ответ Т-клеток наблюдается в острой фазе заболевания. Кроме того, важна и методология исследования клеточного им-мунитета.

Нарушения клеточного ответа проиллюстрированы дефицитом интерферонов I и II типов у пациентов с тяжелыми и среднетяжелыми формами COVID‑19 по сравнению с легкими и бессимптомными случаями заболевания. Это может быть связано с подавлением воспаления интерлейкином‑12 (IL‑12) и развитием вторичного дефекта клеточного иммунитета.

Иммунное взаимодействие

Большой интерес представляет изучение взаимодействия гуморального и клеточного ответа на SARS-Cov‑2. В исследованиях RBD-IgG, Spike IgА, RBD-В-клеток памяти, CD8+- и CD4+-Т-клеток в динамике у одних и тех же пациентов установлено, что у большинства из них (64 %) положительные показатели отмечались через 1–2 месяц после начала заболевания. Через 5–8 месяцев число реконвалесцентов, позитивных на пять тестов, снизилось до 43 %. В то же время как минимум три из пяти тестов были положительными спустя 6–9 месяцев. Важно отметить, что IgG на Spike дает на порядок больше положительных ответов, чем на RBD-антиген. Попытки связать гуморально- клеточные взаимодействия не привели к успеху из-за неоднородности участников исследования и методик оценки иммунного ответа.

Неопределенный результат

В метаанализе 22 исследований (4969 пациентов) установлены неблагоприятные признаки тяжелых форм болезни и летальных исходов, такие как лимфопения и нейтрофилез. Поскольку CD4+-Т-клетки необходимы для сбалансированного и эффективного иммунного ответа, неудивительно, что низкий уровень лимфоцитов может отражать гипервоспалительные процессы и способствовать более тяжелому течению заболевания и повышенной смертности.

Нейтрофилы как неотъемлемая часть врожденной защиты контролируют баланс микробиоты и элиминацию продуктов клеточной деструкции за счет производства активных форм кислорода и высвобождения нейтрофильных внеклеточных ловушек в венозном кровотоке. Лимфопения (менее 500 клеток в 1 мкл) указывает на повышение риска тяжелой формы заболевания и смертельных исходов при COVID‑19 в 3 раза. Стойкий нейтрофилез со сдвигом влево свидетельствует об истощении костномозгового резерва, а при сдвиге вправо отражает нарушения выхода клеток в ткани. Этот легко контролируемый анализом крови параметр указывает на более чем семикратное увеличение для пациента риска заболеть тяжело и погибнуть от COVID‑19.

2672b0621e36ef4bc4a173147d2a597c

Попытки выявить закономерности иммунного ответа на SARS-CoV‑2 оказались пока безуспешными.

Во-первых, можно сделать вывод, что переболевшие коронавирусной инфекцией сохраняют иммунную память в последующие 6–9 месяцев. Дальнейшие динамические исследования покажут, в какие сроки наступает снижение иммунного ответа, требующее профилактической вакцинации и (или) ревакцинации.

Во-вторых, и это очень интересно, каждый изученный компонент иммунного ответа и иммунной памяти демонстрирует различную кинетику. Это связано с индивидуальным ответом на инфекцию, наличием преморбида и частого превращения моноинфекции в смешанные инфекции SARS-CoV‑2 с активизировавшейся микробиотой больного.

В-третьих, неоднородность ответа может быть центральным признаком, характеризующим иммунную память к SARSCoV‑2. Биологические специфические IgG имеют 21 день периода полураспада, уровень антител с течением времени отражает продукцию короткоживущих, а потом и долгоживущих плазматических клеток. С точки зрения исчезновения возбудителя в течение нескольких дней после появления клиники, процесс наработки антител должен быть снижен к 6 месяцам, но, если SARS-CoV‑2 Spike и RBD IgG сохраняются дольше 8 месяцев, это означает, что вирус персистирует в организме хозяина или его микробиоте. Нельзя исключать и связь с пролонгированным иммунным ответом естественной реиммунизации циркулирующими эпидемическими альфа-коронавирусами, поддерживающими иммунный ответ.

В-четвертых, выявление и анализ SARSCoV‑2‑специфических В-клеток памяти потенциально могут применяться в качестве маркера гуморального ответа при вакцинации. Сейчас исследования поствакцинального иммунного ответа проводятся с использованием иммунофлуоресцентного анализа с оценкой IgM- и IgG-антител в качестве маркеров эффективности вакцины (рис. 3). Методы ИФА-диагностики, к сожалению, не стандартизованы едиными белками S, RBD, NCP, качество которых зависит от очистки антигена. Поскольку количество В-клеток памяти стабильно с течением времени, они могут представлять собой более надежный маркер продолжительности гуморальных иммунных реакций, чем иммуноглобулины сыворотки крови.

Таким образом, из результатов исследований иммунного ответа у больных COVID‑19 невозможно сделать какие-либо выводы о защитном иммунитете при новой коронавирусной инфекции. Ведь изучение антител и клеток памяти при этом заболевании пока еще не завершено. А значит, обсуждаемые механизмы защитного иммунитета против SARS-CoV‑2 у людей окончательно не определены.

Источник: Газета «Педиатрия сегодня» №6, 2021

Источник

Тест «Актуальный взгляд на коронавирусную инфекцию»

Проверь свои знания в тесте «Актуальный взгляд на коронавирусную инфекцию»

1. С какими клеточными рецепторами связывается вирус SARS-CoV-2?

1) β-рецептор интерлейкина 8
2) Пре-B-клеточный рецептор
3) AПФ2
4) Т-клеточный рецептор

2. Какие генетические типы нового коронавируса выделяют ученые-генетики?

1) Тип А и В
2) Тип А и С
3) Тип А, В, С, D
4) Тип А, В, и С

3. В какой биологической среде организма человека вирус SARS-CoV-2 персистирует дольше всего?

1) Отделяемое респираторного тракта
2) Сыворотка крови
3) Грудное молоко
4) Фекалии

4. Где вирус SARS-CoV-2 сохраняет свою активность наиболее длительно?

1) Картон
2) Нержавеющая сталь
3) Медь
4) Воздушный аэрозоль

5. Какова минимальная экспозиция спирта, приводящая к гибели возбудителя COVID-19?

1) 30 секунд
2) 10 секунд
3) 60 секунд
4) 40 секунд

6. Какое максимальное расстояние может преодолевать «вирусный аэрозоль» с частицами SARS-CoV-2?

1) 10 метров
2) 5 метров
3) 7 метров
4) 4 метра

7. Сколько видов РНК-вирусов насчитывает семейство коронавирусов в настоящее время?

1) 20
2) 10
3) 30
4) 40

8. Наиболее достоверным методом специфической диагностики острой инфекции SARS-CoV-2 является:

1) Иммуноферментный анализ IgG
2) Иммунохроматографические тесты
3) Тест ПЦР
4) Реакция иммунофлуоресценции

9. К какой группе патогенности относится новый коронавирус SARS-CoV-2?

1) 2
2) 1
3) 3
4) 4

10. К возможным симптомам новой коронавирусной инфекции относится:

1) Боль в мышцах
2) Аносмия и дисгевзия
3) Лихорадка
4) Все вышеперечисленное

11. Показанием для перевода пациента с COVID-19 в ОРИТ является:

1) Угнетение сознания
2) Нестабильная гемодинамика
3) SpO2 Тема теста: Tags COVID-19

Источник

Ангиотензинпревращающий фермент 2. Подходы к патогенетической терапии COVID-19

Полный текст:

Аннотация

Возбудителем коронавирусной инфекции, которая привела к пандемии в 2020 г., является вирус SARSCoV-2. Он относится к β-коронавирусам и имеет высокое генетическое сходство с вирусом SARS-CoV, вызвавшим вспышку тяжелого острого респираторного синдрома в 2002–2003 гг. Анализ межмолекулярных взаимодействий показывает, что SARS-CoV-2 более вирулентен вследствие снижения свободной энергии при связывании с ангиотензинпревращающим ферментом 2 (АСЕ2), который является транспортером для вируса в клетку-хозяина. В связи с широким распространением коронавирусной инфекции по всему миру остро встает вопрос о подробном изучении ключевого звена патогенеза заболевания — АСЕ2. Детальное изучение фермента, который является рецептором на поверхности различных тканей и в норме осуществляет превращение ангиотензина II в ангиотензин (1–7), привело к неоднозначным выводам. Будучи нетканеспецифичным, рецептор широко распространен в сердце, почках, тонкой кишке, яичках, щитовидной железе, жировой ткани. Помимо прямой барорегулирующей функции он подавляет воспаление, главным образом в легочной ткани, участвует в транспорте аминокислот и поддерживает жизнедеятельность микробиома кишечника. Ввиду существенных положительных функций становится очевидной неоднозначность АСЕ2, в том числе при коронавирусной инфекции. Перспективным терапевтическим направлением при коронавирусной инфекции может оказаться влияние на ренин-ангиотензиновую систему. Предварительные данные о применении ингибиторов АСЕ2, препаратов, содержащих данный рецептор в циркуляторной форме, и блокаторов ангиотензинового рецептора II свидетельствуют об их эффективности и, как следствие, улучшении состояния и прогнозов для пациентов с коронавирусной инфекцией.

В обзоре представлена информация о распространении ACE2 в различных тканях человека, его взаимодействии с SARS-CoV-2, дано теоретическое обоснование практического применения препаратов, связанных с метаболическим путем ACE2, для лечения и ограничения распространения коронавирусной инфекции.

Ключевые слова

Введение

В декабре 2019 г. в Китае произошла вспышка острой респираторной инфекции с такими клиниче­скими проявлениями, как лихорадка, сухой кашель, одышка и пневмония [1]. Возбудителем является новый коронавирус, принадлежащий к β-коронавирусам и имеющий схожие характеристики с виру­сом, вызывающим тяжелый острый респираторный синдром (SARS), который являлся пандемичным штаммом в 2002-2003 гг. Новый вирус получил название коронавирус-2 (SARS-CoV-2), а болезнь была названа коронавирусной инфекцией 2019 года (COVID-19). Смертность от COVID-19 повышается в группах пожилых людей (старше 70 лет) и лиц с хроническими заболеваниями (гипертензией, сахарным диабетом, сердечно-сосудистыми нарушения­ми). Два из вышеперечисленных заболеваний тесно связаны с приемом лекарств, которые действуют в качестве ингибитора рецептора ангиотензинпре- вращающего фермента (ACE). Они применяются для блокировки ангиотензинового рецептора и, как следствие, снижения артериального давления.

Ученые тщательно исследуют патофизиоло­гические механизмы COVID-19, взаимодействие вируса с легкими и сердцем человека. Согласно нескольким источникам, ACE2, расположенный на альвеолярных эпителиальных клетках, служит котранспортером для SARS-CoV-2 в клетки легких человека. Таким образом, ACE2 является ключом для понимания механизма развития COVID-19.

В данном обзоре представлена информация о распространении ACE2 в различных тканях челове­ка, его взаимодействии с SARS-CoV-2, дано теоре­тическое обоснование практического применения препаратов, связанных с метаболическим путем ACE2, для лечения и ограничения распространения COVID-19.

Роль ACE2 в патогенезе COVID-19

SARS-CoV-2

Для проникновения в клетку хозяина и обеспе­чения слияния мембраны вируса с мембраной клет­ки хозяина во время инфицирования SARS-CoV-2 использует поверхностный спайковый гликопроте­ин (S). S-гликопротеин является тримерным белком. Он играет ключевую роль в обеспечении выживае­мости коронавирусов, т.к. не только выступает в ка­честве важной функциональной части вириона, но и всецело обеспечивает присоединение и слияние с мембранами клетки-хозяина. Кроме того, S-бе­лок, являющийся самым крупным поверхностным белком коронавирусов, определяет растворимость вирусных частиц и, как следствие, контагиозность SARS-CoV-2.

S-белок имеет два важных участка — S1 и S2: S1 связывается с рецептором на поверхности клет­ки хозяина, а S2 обеспечивает слияние мембран [4]. В S1-участке имеется N-концевой (NTD) и С-кон- цевые домены (CTD1, CTD2 и cTd3). У вируса SARS-CoV на CTD1 располагается рецепторсвязы- вающий домен (RBD).

Коронавирус SARS-CoV-2 проявляет высо­кую степень гомологичности к SARS-CoV [5]. Он проникает в клетку-хозяина с помощью взаимо­действия между S-белком вируса и ACE2 человека. Однако молекулярный механизм данной связи, как и эволюция SARS-CoV-2, остаются не до конца изу­ченными.

Было доказано, что S-гликопротеин SARS- CoV-2 обладает меньшей свободной энергией по сравнению с SARS-CoV [5]. Данное наблюдение подчеркивает, что SARS-CoV-2 является более ста­бильным и меньше подвержен разрушению при по­вышенных температурах — следовательно, SARS- CoV-2 имеет более высокую персистирующую спо­собность, чем SARS-CoV при такой же температуре.

На S-белке у коронавирусов расположен RBD — крайне важный для жизнедеятельности ви­руса домен, обеспечивающий инфицирование. Ин­тересно, что свободная энергия RBD у SARS-CoV-2 оказалась ниже, чем у SARS-CoV, как и его энергия сольватации. Дело в том, что для связи RBD с ACE2 он должен отсоединиться от S-гликопротеина и рас­твориться в воде. Другими словами, SARS-CoV-2 становится более растворимым, и в этом случае взаимодействие с ACE2 происходит гораздо легче.

Снижение свободной энергии S-гликопротеина и энергии сольватации RBD у SARS-CoV-2 может быть следствием эволюции вируса или адаптации к организму хозяина, поскольку обычно природным резервуаром для SARS-подобных коронавирусов являются летучие мыши, у которых температура те­ла в норме выше, чем у людей [6].

Говоря о RBD SARS-CoV-2, необходимо упо­мянуть еще одну важную особенность — он более гибкий, чем аналогичный участок вируса SARS- CoV. Иными словами, для связи с ACE2 он дол­жен преодолеть большую энтропию, а значит, при повышении температуры комплекс RBD-ACE2 становится нестабильным. Эта деталь позволяет надеяться на снижение темпов роста пандемии при наступлении жаркой погоды.

При сравнении комплексов, которые образу­ют анализируемые вирусы с ACE2, выяснилось, что SARS-CoV-2 связывается с ферментом с более высокой аффинностью. Мутационные адаптивные изменения в SARS-CoV-2 относительно SARS- CoV могут служить разгадкой высокой контаги­озной способности и широкого распространения COVID-19.

Строение и функции ACE2

Человеческая карбоксипептидаза ACE2 коди­руется геном ACE2, расположенным на 22-й хромо­соме [7]. ACE2 представляет собой трансмембран­ный белок I типа, имеющий внеклеточный N-гликозилированный N-концевой участок, на котором находится карбоксипептидазный сайт, а также ко­роткий внутриклеточный С-концевой цитоплазма­тический хвост [8]. N-концевой пептидазный домен является местом связи ACE2 с SARS-CoV. Также выделяют две формы белка ACE2: клеточную (свя­занную с мембраной) и циркулирующую (раствори­мую). Клеточная форма — это полноценный белок, синтезируемый в больших количествах пневмоцитами или энтероцитами тонкой кишки.

Циркулирующая форма (у нее сохраняется N-концевой пептидазный участок) возникает после расщепления клеточной формы ACE2 металлопротеазой ADAM17, после чего она попадает в межкле­точное пространство [8]. Напротив, взаимодействие ACE2 с трансмембранной сериновой протеазой II типа TMPRSS2 обеспечивает вхождение SARS- CoV-2 в клетки — мишени легочной ткани и тонкой кишки. TMPRSS2-путь расщепления может инги­бировать ADAMH-путь. TMPRSS2 связывается с ADAM17 для диссоциации комплекса ADAM17- ACE2. Как ADAM17, так и TMPRSS2 отщепляют от ACE2 небольшой С-концевой фрагмент. Именно это служит началом проникновения вируса SARS- CoV в клетку.

Несмотря на схожесть генов ACE и ACE2, белки ACE и ACE2 выполняют различные функ­ции в организме человека. Так, ACE отщепляет от субстрата по одной аминокислоте, действуя как карбоксипептидаза, в то время как ACE2 гидроли­зует связь между белковым остовом и дипептидом с С-конца субстрата. ACE и ACE2 являются неза­менимыми компонентами ренин-ангиотензиновой системы (RAS), задачи которой — поддержание го­меостаза сердечно-сосудистой системы и функцио­нирования различных органов, регуляция систоли­ческого давления, осмотического и электролитного баланса.

Ангиотензиноген синтезируется в печени, после чего преобразуется ренином в ангиотен­зин I (AngI), а затем при участии ACE — в AngII. AngII — это ключевое звено RAS, он связывается с ангиотензиновым рецептором I типа (AT1R). Это взаимодействие приводит к сокращению гладкой мускулатуры бронхов, пролиферации фибробластов в легких, апоптозу альвеолярных эпителиаль­ных клеток, повышению проницаемости сосудов в легочной ткани, а также к острому респиратор­ному дистресс-синдрому [9]. Тем временем ACE2 выступает в качестве контррегулятора активности комплекса ACE-AngII-AT1R, он гидролизует AngII в Angl-7, который, взаимодействуя через Mas-ре­цептор, вызывает вазодилатацию, снижение арте­риального давления и индукцию апоптоза. Схожая защитная функция наблюдается при связывании AngII с рецептором AT2R. Кроме того, ACE2 может взаимодействовать с AngI, превращая его в Ang1-9, из которого возможен переход в Ang1-7 при уча­стии ACE. Также, выступая в качестве партнера для транспортера аминокислот B0AT1, ACE2 прини­мает участие в абсорбции нейтрально заряженных аминокислот в кишечнике [9].

ACE2 в больших количествах экспрессиру­ется в альвеолярных эпителиальных клетках I и II типов, эндотелиальных клетках сосудов, гладкомы­шечных клетках легочной ткани [10]. Коронавирус может проникать в организм человека различными способами. Самым распространенным считается аэрогенный механизм передачи, при котором у заболевшего человека появляются симптомы тяжелой пневмонии. Однако было установлено, что ACE2 содержится в больших количествах в тонкой кишке, яичках, почках, сердце, щитовидной железе, жиро­вой ткани. В меньшей концентрации его обнаружи­вают в печени, толстом кишечнике, мочевом пузыре и надпочечниках.

Структурное моделирование показало, что ком­плекс ACE2-B0AT1 может связываться с S-белком вируса SARS-CoV-2. Таким образом, SARS-CoV-2 может проникать в организм человека через другие ткани и органы, минуя респираторный тракт [11]. Об этом свидетельствуют недавние исследования, показывающие наличие SARS-CoV-2 в стуле зараженных пациентов, а также развитие заболевания без пневмонии или с добавочными симптомами, не связанными с респираторным трактом. В данном случае у больных наблюдаются симптомы зараже­ния желудочно-кишечного тракта: диарея, тошнота, рвота, а также спутанность сознания, головная боль и инфекционные поражения сердца [12][13][14].

Наличие ACE2 в яичках и тестикулярных со­судах указывает на большую восприимчивость к COVID-19 у мужчин. Гендерных, возрастных или расовых различий в концентрации ACE2 в тканях организма человека не выявлено, тем не менее риск смертности повышается для мужчин по сравнению с женщинами и для пожилых людей относительно более молодого поколения. Это связано с возраст­ными и функциональными особенностями меха­низмов врожденного и адаптивного иммунитета, способностью SARS-CoV-2 вызывать цитокиновый шторм, который приводит к иммунопатологиче­ским нарушениям у пациентов с коронавирусной инфекцией. Различное количество клеток иммун­ной системы в легочной ткани способно по-разному противостоять инфекции и аутоповреждению. Уста­новлено, что у женщин (рассматривая гендерные группы) и у людей молодого возраста (рассматривая две возрастные группы до и после 49 лет) те клетки легочной ткани, которые экспрессировали ACE2 в большем количестве, легче инфицировались виру­сом SARS-CoV, при этом клеток иммунной систе­мы в данном случае обнаруживалось меньше, чем в аналогичных тканях со средней экспрессией ACE2. Для пожилых лиц и лиц мужского пола характерна обратная зависимость — при высокой экспрессии ACE2 наблюдается рост числа иммунных клеток в легочной ткани. Это означает, что при инфицирова­нии SARS-CoV и SARS-CoV-2 у этих людей с боль­шей вероятностью будут наблюдаться аутоагрессия и цитокиновый шторм, что существенно отягощает течение болезни.

АСЕ2 и коронавирусная инфекция

COVID-19 представляет собой заболевание, поражающее нижние дыхательные пути [15]. При вскрытии трупов людей, болевших COVID-19, об­наружены массивные поражения легких с фиброз­ными и экссудативными изменениями. При этом мокрота и экссудат заполняли нижние дыхательные пути и альвеолы. По сравнению с воздействием SARS-CoV, при SARS-CoV-2 экссудативных пора­жений наблюдается больше, но фиброз протекает в более легкой форме. Наличие у трупов сегменталь­ной дилатации и стеноза тонкой кишки подчерки­вает развитие инфекционного процесса в данном органе. Поражений иных органов и тканей не вы­явлено. Исследование, проведенное с другими за­болевшими [12], указывает на присутствие у них билатерального диффузного поражения альвеол с фибромукоидным экссудатом, десквамацией пневмоцитов и формированием гиалиновой мембраны в легких.

Если иммунная система не в состоянии спра­виться с SARS-CoV-2, то вирус активно реплици­руется с использованием внутриклеточного ACE2 и затем при выходе во внеклеточное пространство разрушает клетку-хозяина. Как следствие, метабо­лический путь ангиотензина не ингибируется. Это обстоятельство только усугубляет инфекционный процесс и развитие воспаления, а цитокиновый шторм нарушает функционирование не только ре­спираторного тракта, но и сердечно-сосудистой и иных систем органов. Для людей с такими хро­ническими заболеваниями, как артериальная ги­пертензия, ишемическая болезнь сердца и сахар­ный диабет, крайне опасно инфицирование SARS- CoV-2 — при этих заболеваниях метаболический путь ангиотензина является избыточным, а приоб­ретение коронавирусной инфекции серьезно усу­губляет течение сопутствующих заболеваний и с большей вероятностью может привести к тяжелым состояниям и даже к смерти.

ACE2 играет значимую роль во многих патоло­гических и физиологических состояниях. Установ­лено, что мыши, зараженные вирусом SARS-CoV, испытывают недостаток ACE2, у них повышается уровень AngII и развиваются тяжелые заболевания органов дыхания [16]. Отсутствие ACE2, обеспечи­вающего протективную функцию, ведет к дисфунк­ции RAS и острым патологическим респираторным состояниям. Интересно, что защитная функция ACE2 при острых поражениях легких наблюдает­ся не только при инфицировании коронавирусом. У лабораторных мышей, имеющих массивный отек легких, тяжелейшую гипоксию, гиалиноз и воспали­тельные клеточные инфильтраты, при введении рекомбинантного ACE2 наблюдалось восстановление легочной ткани. Также ACE2 защищает от избыточ­ного воспаления при заражении птичьим гриппом. При данном состоянии тяжесть заболевания, его прогрессирование и летальность находятся в прямой зависимости от уровня AngII в плазме крови.

Наличие ACE2 в нереспираторных органах оказывает положительный эффект на функциони­рование данных тканей. У лабораторных мышей с эндогенной недостаточностью ACE2 наблюдаются тяжелые поражения сердца — снижение сократи­тельной способности за счет незначительной вен­трикулярной дилатации и истончения стенки левого желудочка [9].

Концентрация ACE2 может увеличиваться после ишемического инсульта. Это компенсатор­ная реакция, направленная на устранение избытка Ang1-7 и обеспечение защитных эффектов путем уравновешивания AngII.

ACE2 участвует в патологических процессах почечной ткани, хотя точный механизм еще не уста­новлен. У мышей с недостаточностью ACE2 раз­виваются гломерулосклероз и альбуминурия [17]. Снижение концентрации ACE2 вызывает дисбаланс AngII, который участвует в почечном воспалении и фиброзе, объясняя, по крайней мере частично, прогрессирующее поражение почек.

Важной непептидазной функцией ACE2 явля­ется участие в транспорте аминокислот через стен­ку тонкого кишечника. Одной из таких аминокис­лот является триптофан, регулирующий секрецию антимикробных пептидов, которые влияют на со­став кишечного микробиома. Это объясняет нали­чие колита у мышей с недостаточностью ACE2, у которых происходит нарушение транспорта трипто­фана и его недостаток ведет к дисбактериозу и вос­палению.

Несмотря на проведение интенсивной тера­пии, смертность от COVID-19 по-прежнему остает­ся на высоком уровне. Изобретение вакцины — к сожалению, крайне трудоемкий и длительный про­цесс. Кроме того, SARS-CoV-2 мутирует в каждом репликационном цикле. Это существенно осложня­ет разработку вакцины, а при определенном исходе и вовсе может сделать ее бесполезной. Лекарствен­ные препараты, направленные на регулирование дисбаланса RAS, теоретически можно использо­вать в иных целях. Например, для блокирования сайта связывания SARS-CoV-2 с ACE2 возможно применение растворимой формы ACE2, которая, связываясь с RBD вируса, будет ингибировать его проникновение в клетку. Кроме того, ACE2 умень­шит развитие патологических изменений, участвуя в различных протективных метаболических путях.

Сериновая протеаза TMPRSS2 играет ключе­вую роль в клеточном проникновении SARS-CoV-2 и дисфункции ACE2, поэтому блокировка данного фермента может служить для предотвращения тя­желых критических осложнений COVID-19. Уста­новлено, что ингибитор TMPRSS2 камостат мези- лат частично блокирует TMPRSS2-ACE2-опосредованный вход SARS-CoV-2 в клетку [18]. В то же время нафамостат мезилат, являющийся ингибито­ром мембранного слияния мембран клетки-хозяина и SARS-CoV-2, показывает десятикратную эффек­тивность относительно камостатат мезилата. Оба препарата обладают доказанной безопасностью для клинического применения, поэтому могут исполь­зоваться для лечения COVID-19 в медицинских ор­ганизациях. Нафамостат мезилат имеет еще одно свойство — он блокирует протеолиз фибриногена и его переход в фибрин. При коронавирусной ин­фекции наблюдается увеличение в сыворотке крови уровня D-димера — продукта деградации фибрина, а его концентрация более 1 мг/мл ассоциирована с высоким риском смерти пациентов с COVID-19. Таким образом, нафамостат мезилат потенциально является препаратом двойного действия — он не только блокирует вхождение вируса SARS-CoV-2 в клетку, но и предотвращает тромбоз и синдром дис­семинированного внутрисосудистого свертывания. В Японии в марте 2020 г. начались клинические ис­пытания данного препарата для лечения коронавирусной инфекции.

Ингибиторы ACE, блокаторы рецептора AngII, агонисты Mas, возможно, позволят скорректировать нарушения RAS. Блокаторы рецептора AngII приоб­ретают доверие благодаря доказанной функции об­легчения симптомов поражения легочной ткани под действием SARS и вируса птичьего гриппа. Ожи­дается, что блокирование рецепторов Ang — более надежный способ, чем применение ингибиторов ACE, т.к. AngII может синтезироваться различны­ми ферментами. Важно отметить, что препараты с указанным действием терапевтически безопасны и часто применяются. Парадоксально, но, исходя из клинических данных [19], увеличение экспрессии ACE на фоне приема этих лекарственных препаратов не приводит к возрастанию вирулентности SARS- CoV-2. Исследования вируса иммунодефицита че­ловека (HIV) показали, что повышенная экспрессия HIV-связывающих сайтов CCR5 и CD4 защищает па­циентов от вирулентности вируса. HIV избегает су­перинфекции во время процесса попадания в клетку посредством уменьшения количества CCR5. Данное снижение способствует эффективной репликации вируса и, как следствие, влияет на патогенетические механизмы синдрома приобретенного иммунодефи­цита. Остается неясным, применима ли данная кон­цепция для SARS-CoV-2, однако, если коронавирус использует такой же механизм, применение блокаторов рецептора AngII и ACEI вполне обоснованно.

Заключение

Важные мутационные изменения в геноме ви­руса SARS-CoV привели к появлению более сильно­го вида SARS-CoV-2 и развитию пандемии в 2020 г. АСЕ2, с одной стороны, играет ключевую роль в проникновении вируса в клетку-хозяина, а с другой стороны, защищает организм человека от тяжелых поражений внутренних органов при коронавирусной инфекции. Разработка вакцины против вируса, который претерпевает множество мутаций, остает­ся длительным и трудоемким процессом. Зная роль АСЕ2 в RAS, становится возможным применение лекарственных средств, воздействующих на дан­ный метаболический путь, для лечения COVID-19.

Источник

Оцените статью
Самые лучшие ответы на вопрос "Какой"
Adblock
detector